Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations May-2022 DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

(Common to CE, EEE, ME, ECE & AGE)

Time: 3 hours		Max. Marks: 60	
(Answer all Five Units $5 \times 12 = 60$ Marks)			
1	a Solve $(y^2 - 2xy)dx + (2xy - x^2)dy = 0$ b Solve $\frac{dy}{dx} + 2xy = e^{-x^2}$	L6 L3	6M 6M
2	OR a Solve $(D^2 + 5D + 6)y = e^x$ b Solve $(D^2 - 3D + 2)y = xe^{3x} + sin2x$ UNIT-II	L3 L3	6M 6M
3	a Solve $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters	L3	6M
	b Solve $\frac{d^2y}{dx^2} + \frac{1}{r}\frac{dy}{dx} = \frac{12 \log x}{r^2}$	L6	6M
	$\frac{dx^2}{dx^2} \times dx = x^2$		
4	An uncharged condenser of capacity is charged applying an e.m.f $E \sin \frac{t}{\sqrt{LC}}$ through	L5	12M
	leads of self-inductance L and negligible resistance. Prove that at time 't' the charge		
	on one of the plates is $\frac{EC}{2} \left[sin \frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} cos \frac{t}{\sqrt{LC}} \right]$		
5	a Form the partial differential equation by eliminating the constants from $x^2 + y^2$	L2	6M
	$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$ b Solve by the method of separation of variables	L3	6M
	$u_x = 2u_y + u$, where $u(x, 0) = 6e^{-3x}$	LS	OIVI
	OR		
6	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially at rest in its equilibrium position. If it is set to vibrate by giving each of its points a		12M
	velocity $kx(l-x)$ find the displacement of the string at any distance from one end at any time t.		
	UNIT-IV		
7	Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic.	L2	6M
	b If $W = f(z)$ is analytic function then prove that	L5	6M
	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \operatorname{Re} al f(z) \right ^2 = 2 \left f^1(z) \right ^2$		
8	 OR a Find the bilinear transformation that maps the points (1, i, −1) into the points (2, i, −2) in w-plane. 	L1	6M
	b Find the image of the infinite strip $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$	L1	6M

UNIT-V

- 9 a Evaluate using Cauchy's integral formula $\int_{c}^{c} \frac{\sin^{-6} z}{\left(z \frac{\pi}{2}\right)^{3}} dz$
- L5 6M
- Find the Laurent's series of the function $f(z) = \frac{z}{(z+1)(z+2)}$ about z = -2.
- L1 6M

- OF
- Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residues at each
 - Find the residue of the function $f(z) = \frac{1}{(z^2 + 4)^2}$ where c is |z i| = 2

*** END ***